Research

Using our data and know-how to aid decision-making during a pandemic

Le

From research into possible treatments to mobile apps and anticipating future epidemics, data science is at the heart of the scientific, economic and social challenges raised by the pandemic. At 91麻豆国产精品自拍, laboratories and research teams are mobilizing to mount a response to this urgent health crisis. Jamal Atif, a professor at Dauphine鈥揚SL and Deputy Scientific Director at the Paris Artificial Intelligence Research Institute (Prairie), and his team are currently working on developing a decision-making tool for use in managing the COVID-19 epidemic. Here鈥檚 our conversation.

PSL: Could you tell us about some of the projects that PSL鈥檚 data science research teams are tackling right now to address the COVID-19 crisis?

During this unprecedented global crisis, it鈥檚 impossible to overstate the critical role being played by digital technology. From remote working to online shopping and mobile apps, we鈥檙e seeing the emergence of a post-crisis world where digital tech will be even more ubiquitous. And digital research is no exception. Epidemiological models are nothing new, but this is the first time we鈥檝e worked on massive volumes of data to address a crisis, at least in Europe. And data science methods and tools are what鈥檚 made that possible. PSL is conducting a host of research projects in that area: the use of machine learning to discover promising chemicals, imaging-based diagnostics, predictive models based on mobility data and so on. It would be impossible to cite every project, especially since I only have partial knowledge of each one. For my part, alongside other PSL researchers (from Dauphine鈥揚SL, MINES ParisTech鈥揚SL and ENS鈥揚SL) and partners including the CNRS, I鈥檓 hard at work on research into decision-making tools that use mobility tools for managing the COVID-19 epidemic. The has been a big help in that regard, in part by giving us access to data from one of its partners but particularly by raising interest among colleagues and getting them involved in the project. What we hope to do as quickly as possible is provide tools that governments and the general public can use to get a better understanding of the pandemic and identify the health policies that will be most effective.

PSL: How exactly are these research projects aiding the government鈥檚 efforts to manage the current health crisis?

Jamal Atif: There鈥檚 a real spirit of community above all. Everyone is willing to pitch in. Even high-level colleagues are taking part. One example is Emmanuel Bacry, who鈥檚 the CNRS Senior Research Fellow at and the Chief Scientific Officer for the Health Data Hub (HDH). The French government has asked him, along with the director of the HDH, to lead a taskforce on how data, and health data in particular, can be used to try to curb the pandemic.

We try to quantify every model鈥檚 level of uncertainty. We always come back to the famous saying: All models are wrong, but some are useful.

In our own project, after a tedious process of compiling and preparing data 鈥 which we haven鈥檛 quite completed 鈥 we鈥檙e in the process of finalizing our models. The next steps will be to discuss our models and results with epidemiologists, and if they prove to be relevant, we鈥檒l forward them to appointed by French President Emmanuel Macron on March 24 and chaired by the Nobel Laureate in medicine Fran莽oise Barr茅-Sinoussi, and to its equivalent at the CNRS (care@CNRS).

But bear in mind that we need to be cautious. As scientists, we don鈥檛 take prescriptive action. We work on models that have known limitations; we simply try to evaluate their potential. It would be boastful, imprudent and contrary to scientific method to claim any certainty. I have to stress that point. In science, your knowledge is never set in stone, and in this case, the deeper we dig, the more gray areas we find. Our datasets are heterogeneous and sometimes incomplete, and they鈥檙e often tainted with bias and noise; the main challenge we face is in creating datasets we can use, with help from organizations and other partners, and that鈥檚 not an easy task. And we try to quantify every model鈥檚 level of uncertainty. We always come back to the famous saying: All models are wrong, but some are useful.

PSL: Major tech firms like Facebook, Google and Orange are making their data and infrastructure available to scientists and engineers around the world so they can develop tools for leading us out of the crisis. Do you see that as an opportunity for PSL鈥檚 scientists?

Those are legitimate concerns, and we鈥檝e been very strict in that regard. We use spatially aggregated data that doesn鈥檛 compromise user privacy.

Jamal Atif: It鈥檚 important information that鈥檚 being provided to everyone in the world of research and that could be combined with other datasets. At PSL, for example, we very quickly gained access to the data in Facebook鈥檚 Data For Good program. For the project I鈥檓 working on, that data will help us study the impact of mobility on predicting future pandemics. These days, as soon as you mention the big tech firms and data in the same sentence, everyone worries about their personal privacy. Those are legitimate concerns, and we鈥檝e been very strict in that regard. We use spatially aggregated data that doesn鈥檛 compromise user privacy. In other words, we鈥檙e not interested in knowing where a particular person is going; we use pre-quarantine mobility data and up-to-the-minute health data to make localized projections of the pandemic鈥檚 possible spread in France, based on various scenarios for lifting the lockdown. We also hope to use that information to determine whether covariables for mobility and density have real predictive power about the epidemic鈥檚 spread, and possibly even advise the general public once the lockdown has been lifted.